Перевод: со всех языков на русский

с русского на все языки

фиксация данных

  • 1 statefulness

    Программирование: сохранение (текущего) состояния, фиксация ( текущего) состояния (напр. в логическом элементе), сохранение данных о (поступающих) запросах, способность интерактивной обработки транзакций, способность сопровождения состояния, фиксация данных о (поступающих) запросах (напр. на сервере), влияние на последующие события, зависимость от предыстории, обладание вероятностным последействием, обладание квалифицирующей характеристикой, оформленность, структурированность

    Универсальный англо-русский словарь > statefulness

  • 2 statefulness

    1) зависимость от предыстории; влияние на последующие события, обладание вероятностным последействием
    2) вчт фиксация (текущего) состояния, сохранение (текущего) состояния(напр. в логическом элементе)
    3) вчт фиксация данных о (поступающих) запросах, сохранение данных о (поступающих) запросах, способность интерактивной обработки транзакций, способность сопровождения состояния (напр. на сервере)
    4) обладание квалифицирующей характеристикой; структурированность; оформленность

    English-Russian electronics dictionary > statefulness

  • 3 statefulness

    1) зависимость от предыстории; влияние на последующие события, обладание вероятностным последействием
    2) вчт. фиксация (текущего) состояния (напр. в логическом элементе), сохранение (текущего) состояния (напр. в логическом элементе)
    3) вчт. фиксация данных о (поступающих) запросах, сохранение данных о (поступающих) запросах, способность интерактивной обработки транзакций, способность сопровождения состояния (напр. на сервере)
    4) обладание квалифицирующей характеристикой; структурированность; оформленность

    The New English-Russian Dictionary of Radio-electronics > statefulness

  • 4 Datenerfassung

    сущ.
    1) тех. запись данных, учёт данных
    5) выч. накопление данных, получение данных, приём данных, сбор (и регистрация) данных
    6) аэродин. регистрация данных, регистрация результатов испытаний

    Универсальный немецко-русский словарь > Datenerfassung

  • 5 Erfassung

    сущ.
    1) общ. регистрация, схватывание, учёт, регистрация (напр. данных), обнаружение (объекта, цели), установление, охват, (в радиолокации) захват (цели), понимание
    2) комп. представление, получение (данных)
    3) авиа. РЛК-захват (цели), РЛК-обнаружение (цели), обнаружение (цели)
    5) воен. зачисление на военный учёт, сбор и обработка (информации)
    7) с.-х. заготовки, поставки (von D чего-л.), закупка
    8) юр. паспортизация, познание, ó÷¸ò (rechnerische), заготовка (von Produkten)
    14) полигр. кайма
    15) выч. накопление (данных), приём (данных), восприятие
    16) пищ. поставка
    17) рлк. захват цели, захват (цели)
    19) бизн. сбор (данных), фиксация (данных)
    20) инф. группирование, группировка, сбор (и предварительная обработка)
    21) внеш.торг. сбор сведений

    Универсальный немецко-русский словарь > Erfassung

  • 6 erfassung

    сущ.
    1) общ. регистрация, схватывание, учёт, регистрация (напр. данных), обнаружение (объекта, цели), установление, охват, (в радиолокации) захват (цели), понимание
    2) комп. представление, получение (данных)
    3) авиа. РЛК-захват (цели), РЛК-обнаружение (цели), обнаружение (цели)
    5) воен. зачисление на военный учёт, сбор и обработка (информации)
    7) с.-х. заготовки, поставки (von D чего-л.), закупка
    8) юр. паспортизация, познание, ó÷¸ò (rechnerische), заготовка (von Produkten)
    14) полигр. кайма
    15) выч. накопление (данных), приём (данных), восприятие
    16) пищ. поставка
    17) рлк. захват цели, захват (цели)
    19) бизн. сбор (данных), фиксация (данных)
    20) инф. группирование, группировка, сбор (и предварительная обработка)
    21) внеш.торг. сбор сведений

    Универсальный немецко-русский словарь > erfassung

  • 7 Datenregistrierung

    сущ.
    1) тех. запись данных, регистрация данных, сбор данных, сбор информации, учёт данных

    Универсальный немецко-русский словарь > Datenregistrierung

  • 8 Datenaufzeichnung

    сущ.
    1) комп. данные типа "запись" (PL/1, Ада), логическая запись (КОБОЛ)
    2) электр. запись данных, регистрация данных
    4) оп.сист. набор данных (в ОС ЕС), файл с данными (см. Satz)

    Универсальный немецко-русский словарь > Datenaufzeichnung

  • 9 Datenaufzeichnung

    f
    запись данных, регистрация [фиксация] данных

    Deutsch-Russische Wörterbuch polytechnischen > Datenaufzeichnung

  • 10 commit

    1. фиксация транзакции
    2. фиксация (транзакции)

     

    фиксация (транзакции)
    Процедура завершения транзакции в распределенных базах данных. Фиксация происходит лишь после получения подтверждения от всех распределенных элементов базы данных что обработка транзакции в них завершена.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    фиксация транзакции
    фиксировать

    Примеры сочетаний:
    ~ message - сообщение о завершении транзакции.
    [ http://www.morepc.ru/dict/]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > commit

  • 11 non-repudiation

    1. фиксация авторства (с невозможностью отказа от авторства)
    2. фиксация авторства
    3. неотказуемость
    4. неотвергаемость
    5. неоспоримость
    6. идентификация авторства

     

    неотвергаемость
    Сообщение с невозможностью отказа от авторства.
    В неотвергаемых системах шифрования пользователи не могут отменить выполненные действия.
    [ http://www.morepc.ru/dict/]

    Тематики

    EN

     

    фиксация авторства
    неотвергаемость

    Способность предотвратить последующее непризнание отправителем факта отправки сообщения или выполнения действия. Защита от отказа признания одним из участвующих в сеансе связи объектов участия во всем или в части сеанса связи. Процесс, обеспечивающий невозможность непризнания отправителем сообщения (например, запроса на услугу "разовая плата за просмотр программы") факта его направления.
    Рекомендация МСЭ-Т J.170, H.235, J.93.
    [[http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=23]]

    Тематики

    Синонимы

    EN

     

    фиксация авторства (с невозможностью отказа от авторства)
    Защита от отказа одного из объектов, вовлеченных в процесс передачи информации, в том, что он участвовал во всем процессе или в части этого процесса. Предупреждение отрицания факта участия во всем процессе связи или в его части со стороны одного из объектов, участвующих в этом процессе связи (МСЭ-Т Х.1121, МСЭ-Т Х.805, МСЭ-Т Н.235.0, МСЭ-Т Н.235).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

    2.16 неотказуемость (non-repudiation): Способность удостоверять имевшее место действие или событие так, чтобы эти события или действия не могли быть позже отвергнуты.

    [ИСО/МЭК 13888-1, ИСО/МЭК 7498-2]

    Источник: ГОСТ Р ИСО/МЭК 13335-1-2006: Информационная технология. Методы и средства обеспечения безопасности. Часть 1. Концепция и модели менеджмента безопасности информационных и телекоммуникационных технологий оригинал документа

    идентификация авторства (non-repudiation): Возможность для любого участника при использовании данных ЭУЗ иметь доказательства, подтверждающие их целостность, происхождение, а также невозможность подделки.

    Источник: ГОСТ Р ИСО/ТС 18308-2008: Информатизация здоровья. Требования к архитектуре электронного учета здоровья

    2.21 неоспоримость (non-repudiation): Сервис, обеспечивающий подтверждение целостности и происхождения данных (неразрывно друг от друга) любой из участвующих сторон.

    Источник: ГОСТ Р ИСО/ТС 22600-2-2009: Информатизация здоровья. Управление полномочиями и контроль доступа. Часть 2. Формальные модели

    3.49 неотказуемость (non-repudiation): Способность удостоверять имевшее место действие или событие так, чтобы эти события или действия не могли быть позже отвергнуты [1], [2].

    [ИСО/МЭК 13888-1:2004] [9]

    Источник: ГОСТ Р ИСО/ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    3.49 неотказуемость (non-repudiation): Способность удостоверять имевшее место действие или событие так, чтобы эти события или действия не могли быть позже отвергнуты [1], [2].

    [ИСО/МЭК 13888-1:2004] [9]

    Источник: ГОСТ Р ИСО ТО 13569-2007: Финансовые услуги. Рекомендации по информационной безопасности

    Англо-русский словарь нормативно-технической терминологии > non-repudiation

  • 12 latchup

    фиксация, защёлкивание ( данных)

    English-Russian dictionary of computer science and programming > latchup

  • 13 latchup

    фиксация, защелкивание (данных)

    Новый англо-русский словарь > latchup

  • 14 latching

    ['lætʃɪŋ]
    1) Общая лексика: запирание
    2) Военный термин: механическое замыкание
    4) Строительство: стопорящий
    5) Железнодорожный термин: защёлкивание, защита от помех
    8) Вычислительная техника: фиксирование, защёлкивание (данных), защелкивание (данных)
    10) Космонавтика: сцепка
    12) Нефтегазовая техника стопорение стола ротора
    13) Автоматика: зажим, зажимание
    14) Робототехника: запор, защёлка
    15) Макаров: крепление двери ригелями, сцепка (КА), автоблокировка (механическим способом; в реле), блокировка (реле, контактора)

    Универсальный англо-русский словарь > latching

  • 15 clock synchronization

    1. синхронизация по тактам
    2. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

     

    синхронизация по тактам
    тактовая синхронизация


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > clock synchronization

  • 16 time synchronization

    1. синхронизация времени

     

    синхронизация времени
    -
    [ ГОСТ Р МЭК 60870-5-103-2005]

    Также нормированы допустимые временные задержки для различных видов сигналов, включая дискретные сигналы, оцифрованные мгновенные значения токов и напряжений, сигналы синхронизации времени и т.п.
    [Новости Электротехники №4(76) | СТАНДАРТ МЭК 61850]

    Широковещательное сообщение, как правило, содержит адрес отправителя и глобальный адрес получателя. Примером широковещательного сообщения служит синхронизация времени.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    Устройства последних поколений дают возможность синхронизации времени с точностью до микросекунд с помощью GPS.

    С помощью этого интерфейса сигнал синхронизации времени (от радиоприемника DCF77 сигнал точного времени из Braunschweig, либо от радиоприемника iRiG-B сигнал точного времени  глобальной спутниковой системы GPS) может быть передан в терминал для точной синхронизации времени.

    [Герхард Циглер. ЦИФРОВАЯ ДИСТАНЦИОННАЯ ЗАЩИТА. ПРИНЦИПЫ И ПРИМЕНЕНИЕ
    Перевод с английского ]

    В  том  случае  если  принятое  сообщение  искажено ( повреждено)  в  результате неисправности  канала  связи  или  в  результате  потери  синхронизации  времени, пользователь имеет возможность...

    2.13 Синхронизация часов реального времени сигналом по оптовходу 
    В современных системах релейной защиты зачастую требуется синхронизированная работа часов всех реле в системе для восстановления хронологии работы разных реле.
    Это может быть выполнено с использованием сигналов синхронизации времени   по интерфейсу IRIG-B, если  реле  оснащено  таким  входом  или  сигналом  от  системы OP

    [Дистанционная защита линии MiCOM P443/ ПРИНЦИП  РАБОТЫ]


    СИНХРОНИЗАЦИЯ ВРЕМЕНИ СОГЛАСНО СТАНДАРТУ IEEE 1588

    Автор: Андреас Дреер (Hirschmann Automation and Control)

    Вопрос синхронизации устройств по времени важен для многих распределенных систем промышленной автоматизации. При использовании протокола Precision Time Protocol (PTP), описанного стандартом IEEE 1588, становится возможным выполнение синхронизации внутренних часов устройств, объединенных по сети Ethernet, с погрешностями, не превышающими 1 микросекунду. При этом к вычислительной способности устройств и пропускной способности сети предъявляются относительно низкие требования. В 2008 году была утверждена вторая редакция стандарта (IEEE 1588-2008 – PTP версия 2) с рядом внесенных усовершенствований по сравнению с первой его редакцией.

    ЗАЧЕМ НЕОБХОДИМА СИНХРОНИЗАЦИЯ УСТРОЙСТВ ПО ВРЕМЕНИ?

    Во многих системах должен производиться отсчет времени. О неявной системе отсчета времени можно говорить тогда, когда в системе отсутствуют часы и ход времени определяется процессами, протекающими в аппаратном и программном обеспечении. Этого оказывается достаточно во многих случаях. Неявная система отсчета времени реализуется, к примеру, передачей сигналов, инициирующих начало отсчета времени и затем выполнение определенных действий, от одних устройств другим.

    Система отсчета времени считается явной, если показания времени в ней определяются часами. Указанное необходимо для сложных систем. Таким образом, осуществляется разделение процедур передачи данных о времени и данных о процессе.

    Два эффекта должны быть учтены при настройке или синхронизации часов в отдельных устройствах. Первое – показания часов в отдельных устройствах изначально отличаются друг от друга (смещение показаний времени друг относительно друга). Второе – реальные часы не производят отсчет времени с одинаковой скоростью. Таким образом, требуется проводить постоянную корректировку хода самых неточных часов.

    ПРЕДЫДУЩИЕ РЕШЕНИЯ

    Существуют различные способы синхронизации часов в составе отдельных устройств, объединенных в одну информационную сеть. Наиболее известные способы – это использование протокола NTP (Network Time Protocol), а также более простого протокола, который образован от него – протокола SNTP (Simple Network Time Protocol). Данные методы широко распространены для использования в локальных сетях и сети Интернет и позволяют обеспечивать синхронизацию времени с погрешностями в диапазоне миллисекунд. Другой вариант – использование радиосигналов с GPS спутников. Однако при использовании данного способа требуется наличие достаточно дорогих GPS-приемников для каждого из устройств, а также GPS-антенн. Данный способ теоретически может обеспечить высокую точность синхронизации времени, однако материальные затраты и трудозатраты обычно препятствуют реализации такого метода синхронизации.

    Другим решением является передача высокоточного временного импульса (например, одного импульса в секунду) каждому отдельному устройству по выделенной линии. Реализация данного метода влечет за собой необходимость создания выделенной линии связи к каждому устройству.

    Последним методом, который может быть использован, является протокол PTP (Precision Time Protocol), описанный стандартом IEEE 1588. Протокол был разработан со следующими целями:

    • Обеспечение синхронизация времени с погрешностью, не превышающей 1 микросекунды.
    • Предъявление минимальных требований к производительности процессоров устройств и к пропускной способности линии связи, что позволило бы обеспечить реализацию протокола в простых и дешевых устройствах.
      • Предъявление невысоких требований к обслуживающему персоналу.
      • Возможность использования в сетях Ethernet, а также в других сетях.
      • Спецификация его как международного стандарта.

    ОБЛАСТИ ПРИМЕНЕНИЯ ПРОТОКОЛА PTP

    Протокол PTP может быть применен в различного рода системах. В системах автоматизации, протокол PTP востребован везде, где требуется точная синхронизация устройств по времени. Протокол позволяет синхронизировать устройства в робототехнике или печатной промышленности, в системах осуществляющих обработку бумаги и упаковку продукции и других областях.

    В общем и целом в любых системах, где осуществляется измерение тех или иных величин и их сравнение с величинами, измеренными другими устройствами, использование протокола PTP является популярным решением. Системы управления турбинами используют протокол PTP для обеспечения более эффективной работы станций. События, происходящие в различных частях распределенных в пространстве систем, определяются метками точного времени и затем для целей архивирования и анализа осуществляется их передача на центры управления. Геоученые используют протокол PTP для синхронизации установок мониторинга сейсмической активности, удаленных друг от друга на значительные расстояния, что предоставляет возможность более точным образом определять эпицентры землетрясений. В области телекоммуникаций рассматривают возможность использования протокола PTP для целей синхронизации сетей и базовых станций. Также синхронизация времени согласно стандарту IEEE 1588 представляет интерес для разработчиков систем обеспечения жизнедеятельности, систем передачи аудио и видео потоков и может быть использована в военной промышленности.

    В электроэнергетике протокол PTPv2 (протокол PTP версии 2) определен для синхронизации интеллектуальных электронных устройств (IED) по времени. Например, при реализации шины процесса, с передачей мгновенных значений тока и напряжения согласно стандарту МЭК 61850-9-2, требуется точная синхронизация полевых устройств по времени. Для реализации систем защиты и автоматики с использованием сети Ethernet погрешность синхронизации данных различных устройств по времени должна лежать в микросекундном диапазоне.

    Также для реализации функций синхронизированного распределенного векторного измерения электрических величин согласно стандарту IEEE C37.118, учета, оценки качества электрической энергии или анализа аварийных событий необходимо наличие устройств, синхронизированных по времени с максимальной точностью, для чего может быть использован протокол PTP.

    Вторая редакция стандарта МЭК 61850 определяет использование в системах синхронизации времени протокола PTP. Детализация профиля протокола PTP для использования на объектах электроэнергетики (IEEE Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications) в настоящее время осуществляется рабочей группой комитета по релейной защите и автоматике организации (PSRC) IEEE.

    ПРОТОКОЛ PTP ВЕРСИИ 2

    В 2005 году была начата работа по изменению стандарта IEEE1588-2002 с целью расширения возможных областей его применения (телекоммуникации, беспроводная связь и в др.). Результатом работы стало новое издание IEEE1588-2008, которое доступно с марта 2008 со следующими новыми особенностями:

    • Усовершенствованные алгоритмы для обеспечения погрешностей в наносекундном диапазоне.
    • Повышенное быстродействие синхронизации времени (возможна более частая передача сообщений синхронизации Sync).
    • Поддержка новых типов сообщений.
    • Ввод однорежимного принципа работы (не требуется передачи сообщений типа FollowUp).
    • Ввод поддержки функции т.н. прозрачных часов для предотвращения накопления погрешностей измерения при каскадной схеме соединения коммутаторов.
    • Ввод профилей, определяющих настройки для новых областей применения.
    • Возможность назначения на такие транспортные механизмы как DeviceNet, PROFInet и IEEE802.3/Ethernet (прямое назначение).
    • Ввод структуры TLV (тип, длина, значение) для расширения возможных областей применения стандарта и удовлетворения будущих потребностей.
    • Ввод дополнительных опциональных расширений стандарта.

    ПРИНЦИП ФУНКЦИОНИРОВАНИЯ СИСТЕМ НА ОСНОВЕ ПРОТОКОЛА PTP

    В системах, где используется протокол PTP, различают два вида часов: ведущие часы и ведомые часы. Ведущие часы, в идеале, контролируются либо радиочасами, либо GPS-приемниками и осуществляют синхронизацию ведомых часов. Часы в конечном устройстве, неважно ведущие ли они или ведомые, считаются обычными часами; часы в составе устройств сети, выполняющих функцию передачи и маршрутизации данных (например, в Ethernet-коммутаторах), считаются граничными часами.

    Процедура синхронизации согласно протоколу PTP подразделяется на два этапа. На первом этапе осуществляется коррекция разницы показаний времени между ведущими и ведомыми часами – то есть осуществляется так называемая коррекция смещения показаний времени. Для этого ведущее устройство осуществляет передачу сообщения для целей синхронизации времени Sync ведомому устройству (сообщение типа Sync). Сообщение содержит в себе текущее показание времени ведущих часов и его передача осуществляется периодически через фиксированные интервалы времени. Однако поскольку считывание показаний ведущих часов, обработка данных и передача через контроллер Ethernet занимает некоторое время, информация в передаваемом сообщении к моменту его приема оказывается неактуальной.   Одновременно с этим осуществляется как можно более точная фиксация момента времени, в который сообщение Sync уходит от отправителя, в составе которого находятся ведущие часы (TM1). Затем ведущее устройство осуществляет передачу зафиксированного момента времени передачи сообщения Sync ведомым устройствам (сообщение FollowUp). Те также как можно точнее осуществляют измерение момента времени приема первого сообщения (TS1) и вычисляют величину, на которую необходимо выполнить коррекцию разницы в показаниях времени между собою и ведущим устройством соответственно (O) (см. рис. 1 и рис. 2). Затем непосредственно осуществляется коррекция показаний часов в составе ведомых устройств на величину смещения. Если задержки в передачи сообщений по сети не было, то можно утверждать, что устройства синхронизированы по времени.

    На втором этапе процедуры синхронизации устройств по времени осуществляется определение задержки в передаче упомянутых выше сообщений по сети между устройствами. Указанное выполняется  при использовании сообщений специального типа. Ведомое устройство отправляет так называемое сообщение Delay Request (Запрос задержки в передаче сообщения по сети) ведущему устройству и осуществляет фиксацию момента передачи данного сообщения. Ведущее устройство фиксирует момент приема данного сообщения и отправляет зафиксированное значение в сообщении Delay Response (Ответное сообщение с указанием момента приема сообщения). Исходя из зафиксированных времен передачи сообщения Delay Request ведомым устройством и приема сообщения Delay Response ведущим устройством производится оценка задержки в передачи сообщения между ними по сети. Затем производится соответствующая коррекция показаний часов в ведомом устройстве. Однако все упомянутое выше справедливо, если характерна симметричная задержка в передаче сообщения в обоих направлениях между устройствами (то есть характерны одинаковые значения в задержке передачи сообщений в обоих направлениях).

    Задержка в передачи сообщения в обоих направлениях будет идентичной в том случае, если устройства соединены между собой по одной линии связи и только. Если в сети между устройствами имеются коммутаторы или маршрутизаторы, то симметричной задержка в передачи сообщения между устройствами не будет, поскольку коммутаторы в сети осуществляют сохранение тех пакетов данных, которые проходят через них, и реализуется определенная очередность их передачи. Эта особенность может, в некоторых случаях, значительным образом влиять на величину задержки в передаче сообщений (возможны значительные отличия во временах передачи данных). При низкой информационной загрузке сети этот эффект оказывает малое влияние, однако при высокой информационной загрузке, указанное может значительным образом повлиять на точность синхронизации времени. Для исключения больших погрешностей был предложен специальный метод и введено понятие граничных часов, которые реализуются в составе коммутаторов сети. Данные граничные часы синхронизируются по времени с часами ведущего устройства. Далее коммутатор по каждому порту является ведущим устройством для всех ведомых устройств, подключенных к его портам, в которых осуществляется соответствующая синхронизация часов. Таким образом, синхронизация всегда осуществляется по схеме точка-точка и характерна практически одинаковая задержка в передаче сообщения в прямом и обратном направлении, а также практическая неизменность этой задержки по величине от одной передачи сообщения к другой.

    Хотя принцип, основанный на использовании граничных часов показал свою практическую эффективность, другой механизм был определен во второй  версии протокола PTPv2 – механизм использования т. н. прозрачных часов. Данный механизм  предотвращает накопление погрешности, обусловленной изменением величины задержек в передаче сообщений синхронизации коммутаторами и предотвращает снижение точности синхронизации в случае наличия сети с большим числом каскадно-соединенных коммутаторов. При использовании такого механизма передача сообщений синхронизации осуществляется от ведущего устройства ведомому, как и передача любого другого сообщения в сети. Однако когда сообщение синхронизации проходит через коммутатор фиксируется задержка его передачи коммутатором. Задержка фиксируется в специальном поле коррекции в составе первого сообщения синхронизации Sync или в составе последующего сообщения FollowUp (см. рис. 2). При передаче сообщений Delay Request и Delay Response также осуществляется фиксация времени задержки их в коммутаторе. Таким образом, реализация поддержки т. н. прозрачных часов в составе коммутаторов позволяет компенсировать задержки, возникающие непосредственно в них.

    РЕАЛИЗАЦИЯ ПРОТОКОЛА PTP

    Если необходимо использование протокола PTP в системе, должен быть реализован стек протокола PTP. Это может быть сделано при предъявлении минимальных требований к производительности процессоров устройств и к пропускной способности сети. Это очень важно для реализации стека протокола в простых и дешевых устройствах. Протокол PTP может быть без труда реализован даже в системах, построенных на дешевых контроллерах (32 бита).

    Единственное требование, которое необходимо удовлетворить для обеспечения высокой точности синхронизации, – как можно более точное измерение устройствами момента времени, в который осуществляется передача сообщения, и момента времени, когда осуществляется прием сообщения. Измерение должно производится максимально близко к аппаратной части (например, непосредственно в драйвере) и с максимально возможной точностью. В реализациях исключительно на программном уровне архитектура и производительность системы непосредственно ограничивают максимально допустимую точность.

    При использовании дополнительной поддержки аппаратного обеспечения для присвоения меток времени, точность может быть значительным образом повышена и может быть обеспечена ее виртуальная независимость от программного обеспечения. Для этого необходимо использование дополнительной логики, которая может быть реализована в программируемой логической интегральной схеме или специализированной для решения конкретной задачи интегральной схеме на сетевом входе.

    РЕЗУЛЬТАТЫ

    Компания Hirschmann – один из первых производителей, реализовавших протокол PTP и оптимизировавших его использование. Компанией был разработан стек, максимально эффективно реализующий протокол, а также чип (программируемая интегральная логическая схема), который обеспечивает высокую точность проводимых замеров.

    В системе, в которой несколько обычных часов объединены через Ethernet-коммутатор с функцией граничных часов, была достигнута предельная погрешность +/- 60 нс при практически полной независимости от загрузки сети и загрузки процессора. Также компанией была протестирована система, состоящая из 30 каскадно-соединенных коммутаторов, обладающих функцией поддержки т.н. прозрачных часов и были зафиксированы  погрешности менее в пределах +/- 200 нс.

    Компания Hirschmann Automation and Control реализовала протоколы PTP версии 1 и версии 2 в промышленных коммутаторах серии MICE, а также в серии монтируемых на стойку коммутаторов MACH100.

    ВЫВОДЫ

    Протокол PTP во многих областях уже доказал эффективность своего применения. Можно быть уверенным, что он получит более широкое распространение в течение следующих лет и что многие решения при его использовании смогут быть реализованы более просто и эффективно чем при использовании других технологий.

    [ Источник]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > time synchronization

  • 17 holding

    ['həʊldɪŋ]
    1) Общая лексика: (предназначенный) для хранения, арендное владение, владение (акциями и т. п.), держащий, доля участия, занятие (линии связи), капиталовложение: участие в капитале, несущий, удерживание, удерживающий, участок земли (особ. арендованный), проведение (собрания), (shares) доля, вклад, вклады, угодье
    2) Авиация: полёт в зоне ожидания, выдерживание самолёта (перед посадкой), полёт под куполом четко против ветра (парашютизм)
    3) Морской термин: ведение, слежение за целью
    6) Техника: блокировка, блокирующая цепь, закрепление, крепление, ожидание (разрешения на посадку), синхронизация, удержание, фиксация, хранение, хранение информации, владение (напр. патентом)
    7) Сельское хозяйство: участок земли (особ, арендованный), земельное владение
    9) Железнодорожный термин: удержание (ТАН; реле)
    10) Юридический термин: арендованная недвижимость, держание, решение, судебное решение, имущество (особ. арендованное недвижимое имущество)
    13) Автомобильный термин: проведение
    14) Горное дело: поддерживание
    15) Дипломатический термин: запасный, сковывающий
    17) Металлургия: выдержка (напр. при термообработке)
    18) Радио: захват
    20) Вычислительная техника: хранение (информации)
    22) Банковское дело: владение акциями, пакет акций
    23) Пищевая промышленность: выдерживание, занятие (линии), стабилизация (пространственного положения)
    24) Упаковка: вместимость тары
    25) Реклама: холдинг
    26) Деловая лексика: запас, хранилище
    27) SAP. компания
    29) Складское дело: склад
    32) Оружейное производство: прикладка, способ держания оружия
    33) юр.Н.П. имение
    34) Макаров: аренда, вместимость, выдерживание радиоактивных веществ, держащий в своих руках, для временного хранения, для выдерживания, для ожидания, задерживание, захватывание, предназначенный для временного хранения, предназначенный для выдерживания, предназначенный для ожидания, с крепкой хваткой, цепкий, фонд (библиотеки и т.п.), постав (головы лошади), выдержка (металла), фиксация (метод экстраполяции в импульсных системах), хранение (напр. данных), ждущий (о самолёте; в зоне ожидания перед посадкой), фиксация (потенциала), выдерживание (соблюдение, сохранение на заданном уровне)
    35) SAP.фин. держащийся, проводящий, участие

    Универсальный англо-русский словарь > holding

  • 18 capture

    ['kæptʃə]
    1) Общая лексика: брать в плен, ввод данных, взятие, взятие в плен, взять (город), взять в плен, добыча, забирать, занятие, захват (элементарных частиц), захватывать силой, пленение, поглощение, поимка, приз, призовое судно, увлечь, улавливание, улавливать, пленить, захватить, запечатлеть (на снимке, фотографии), получать, заполонить, заполонять, отражать, отразить, ухватить (смысл, суть и т.п.), подметить
    2) Компьютерная техника: перехватить, перехватывать, собрать, записывать (поток данных, звука, изображения), запись (потока данных, звука, изображения)
    4) Биология: отлавливать
    5) Морской термин: захват в плен
    7) Техника: ловля, перехват (реки), подобрать
    8) Химия: поглощать
    9) Математика: поглотить, уловить
    10) Юридический термин: каперство
    11) Полиграфия: ввод (данных)
    12) Политика: вторжение, нападение
    13) Электроника: сбор информации
    14) Вычислительная техника: ввод (схематических описаний), занимать, каптировать, лов, ловить, сбор данных, сбор данных или информации, собирать данные, фиксировать (изображение), собирать (данные), захват (кадров), захватывать (канал связи)
    17) Экология: каптаж (напр., CO2 сapture - каптаж двуокиси углерода; CCS = CO2 Capture and Storage - (общее название технологий): каптаж и (долгосрочное) хранение двуокиси углерода), отлов
    18) Энергетика: захватывать
    19) Патенты: сбор (данных)
    20) Деловая лексика: завоёвывать, завоевание
    21) Автоматика: фиксация (изображения)
    22) Макаров: захват (в яд. химии), сбор (напр. данных)
    23) Безопасность: добывание, получение
    24) Дактилоскопия: захватывать

    Универсальный англо-русский словарь > capture

  • 19 two-phase commit

    Универсальный англо-русский словарь > two-phase commit

  • 20 Erfassen

    сущ.
    1) общ. понимание, усвоение, восприятие
    2) комп. представление, накопление (данных), сбор (данных), фиксация (см. Datenerfassung; данных)
    3) с.-х. заготовка, заготовление
    4) выч. учёт, получение (данных), приём (данных), регистрация (см. Datenerfassung; данных), охват

    Универсальный немецко-русский словарь > Erfassen

См. также в других словарях:

  • фиксация (транзакции) — Процедура завершения транзакции в распределенных базах данных. Фиксация происходит лишь после получения подтверждения от всех распределенных элементов базы данных что обработка транзакции в них завершена. [Л.М. Невдяев. Телекоммуникационные… …   Справочник технического переводчика

  • ФИКСАЦИЯ РЕЗУЛЬТАТОВ НАБЛЮДЕНИЯ — запись рез тов наблюдения в специальных документах. В целях последующей обработки и анализа рез ты наблюдения должны быть зафиксированы в форме протокола, карточки наблюдения, таблицы наблюдения и т. п. Основное требование к фиксации рез тов… …   Российская социологическая энциклопедия

  • Фиксация размеров земского обложения — и следовательно, косвенно земских расходов установлена временными правилами 12 июня 1900 г. Городовым положением определено, что размер оценочного сбора с частных недвижимых имуществ, устанавливаемый городской думой, не должен превышать 10… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • СБОР И РЕГИСТРАЦИЯ ДАННЫХ — фиксация сведений о состоянии различных объектов, событий, явлений на некотором носителе данных (документ, машинный носитель и т.д.). Регистрация данных может производиться вручную, механизированным, автоматизированным и автоматическим способом.… …   Большой бухгалтерский словарь

  • СБОР И РЕГИСТРАЦИЯ ДАННЫХ — фиксация сведений о состоянии различных объектов, событий, явлений на некотором носителе данных (документ, машинный носитель и т.д.). Регистрация данных может производиться вручную, механизированным, автоматизированным и автоматическим способом.… …   Большой экономический словарь

  • ОБРАБОТКА ДАННЫХ — комплекс процедур, направленных на преобразование и обобщение данных социологического исследования. В отечественной социологии термин трактуется очень широко. Обычно к О.Д. относят процедуры проверки и кодирования заполненного инструментария, в… …   Социология: Энциклопедия

  • сбор и регистрация данных — Фиксация сведений о состоянии различных объектов, событий, явлений на некотором носителе данных (документ, машинный носитель и т.д.). Регистрация данных может производиться вручную, механизированным, автоматизированным и автоматическим способом.… …   Справочник технического переводчика

  • Сетчатые имплантаты — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Викифицировать статью …   Википедия

  • ОПИСАНИЕ — ОПИСАНИЕ, дескрипция (англ. description описание) 1) процедуры фиксации средствами естественного или искусственного языка сведений об объектах, фиксируемых в наблюдении, эксперименте и измерении; 2) способ языковой индивидуализации объектов,… …   Новейший философский словарь

  • ОПИСАНИЕ, дескрипция — (англ. description описание) 1) процедуры фиксации средствами естественного или искусственного языка сведений об объектах, фиксируемых в наблюдении, эксперименте и измерении; 2) способ языковой индивидуализации объектов, позволяющий осмысливать… …   Социология: Энциклопедия

  • ДЬЮИ — (Dewey) Джон (1859 1952) американский философ, психолог и педагог. Образование получил в Вермонтском ун те и колледже Хопкинса (д р философии, 1884). С 1889 г. профессор философии в Мичиганском ун те, затем в Миннесотском, Чикагском и… …   Энциклопедический словарь по психологии и педагогике

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»